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Abstract

The classical optimization problems of plates and shells to satisfy a priori given geometry and dynamical
characteristics are considered. Orthotropic plates and shells with variable thickness and low transverse
stiffness are analyzed. First, some useful theorems and their proofs are given. Then the finite approximation
of the problem related to optimization of free vibrations of shells with transverse deformation and rotary
inertia is discussed. The varational iteration (MVI) and Bubnov-Galerkin (MB) methods are applied, and
their convergence and suitability for application to plates and shells analysis are discussed and numerically
evaluated.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Plates and shells of moderate thickness are often used in many engineering structures, such as
aircraft fuselages, turbine discs, reinforced aircraft bosses and wings. Free vibrations of
rectangular moderately thick plates and shells are of great importance, because the dynamic
characteristics are needed to carry out proper optimization of the geometry of their cross-section
in order to achieve the required structural performance.
Recently the control of spatial structures composed of plates and shells have attracted the

attention of many engineers and researchers. Although the concept of control appears to be
simple in theory [1,2] a new construction of a spatial structure (plate, shell) together with the
sensors and actuators made from ceramics or polymers requires both careful modelling and
numerical investigations. The use of modern smart materials such as piezoceramics and polymers
[3] as sensors and actuators modifies the shape of the spatial structure to be controlled.
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The modified spatial structure can therefore be considered as one with variable thickness. This
problem has recently been addressed in Refs. [4,5], where assumptions and hypotheses for a 3-D
theory for orthotropic shallow shells with attached masses (additives) have been proposed, and
the validity of the 2-D theories range has been estimated.
Aspects of optimization are as follows: (a) a practical realization of a construction with minimal

masses, but capable of sustaining a given dynamic load; (b) a practical realization of a
construction with a priori a specified frequency of oscillations or other dynamical properties.
Several types of optimization are described in the literature, and some devoted to optimization

of plates and shells are briefly mentioned here. The optimal shell configurations has been
illustrated and classified in Refs. [6,7], which include a bibliography up to 1991. It has been
pointed out that it is difficult for to provide a general formulation of the optimization tasks for a
class of shells, but that each situation should be solved separately. Mass optimization of ribbed
thin-walled structures has been presented in Ref. [8]. Optimization of various constructions from
the point of view of stability has been presented in Ref. [9]. Optimizations of three layers
constructions have also been presented in Ref. [10], whereas a general formulation of
optimizations of shells using FEM and non-linear programming has been given in Ref. [11].
Many fundamental problems of design optimizations have been addressed in refs. [12–15], and

they are helpful while formulating optimization problems of constructions with shell members.
Although many optimization problems are described in books and references, many researchers

point out that the application of optimization is complicated even for a relatively simple design
and that it requires strict formulation of a rigorous mathematical background (see for example
Refs. [16,17]).

2. Free vibrations of orthotropic plates and shells with variable thickness and low transverse stiffness

In this Section different frequency spectra of shells with transverse deformation and rotary
inertia will be described and methods to analyze free oscillation solutions of rectangular shells will
be given. The theoretical results are applied to the analysis of plates with either constant or
variable thickness and with low transverse stiffness.

2.1. Frequency spectra properties of orthotropic shells with variable thickness

It is known that a shell is a continuous medium composed of an infinite number of degrees of
freedom. It means that the number of frequencies is infinite. Stiffness and curvature coefficients as
well as the thickness distribution along a plate surface have an essential influence on the frequency
spectra distribution.
Oscillations of shallow shells with transverse deformation and rotary inertia as well as shells

with variable thickness are considered below [18,19].
Suppose that a shell has a finite area O with a border S. A kinematic model for the governing

equations for displacements using an isotropic shell with constant thickness with transverse
deformation and rotary inertia has been introduced by Naghdi [20, 21]. In the present case, free
oscillations of an orthotropic shell with variable thickness are governed by the following more
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generalized equations (see also Refs. [22, 23]):
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Eqs. (1) have been given in a hybrid form. Shear forces, moments and membrane forces F, w, gx,
gy satisfy the following conditions:
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The boundary conditions on S boundary will be formulated for a general case. Let
S ¼ S1 þ S2 þ S3; where S1 is a free support, S2 is a roller support and S3 is a movable support.
Then

Qn ¼ Mn ¼ Mt ¼ 0 on S1; ð2Þ

w ¼ Mn ¼ gt ¼ 0 on S2; ð3Þ

w ¼ gn ¼ gt ¼ 0 on S3; ð4Þ

F ¼
@2F

@n2
¼ 0 on S: ð5Þ
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The following conditions related to stiffness coefficients and h(x, y) function are assumed:
(a)

0oAHpAijmkðx; yÞpAB; 0oaHpaijmkðx; yÞpaB; ð6Þ

and Aijmkðx; yÞ and aijmkðx; yÞ are limited functions in O space (i; j;m; k ¼ 1; 2; 3);
(b) for an arbitrary ðx; yÞAO and x; ZAR1 there exists a constant c0 > 0 such that

A1111ðx; yÞx
2 þ 2A1122ðx; yÞxZþ A2222ðx; yÞZ2Xc0 x2 þ Z2

� �
; ð7Þ

(c) there exists a constant c1 > 0; so that for all ðx; yÞAO and x; ZAR1 the following inequality
holds:

a1111ðx; yÞx
2 þ 2a1122ðx; yÞ � a1212ðx; yÞð ÞxZþ a2222ðx; yÞZ2Xc1 x2 þ Z2

� �
; ð8Þ

(d) h(x, y) is the function bounded on O, and for (an arbitrary) ðx; yÞAO

0ohHphðx; yÞphB: ð9Þ

Since the frequency o does not occur in the fourth equation of Eqs. (1), then F may be reduced.
Consider separately the fourth equation of Eqs. (1) with the boundary conditions (5). It may be

presented in the following form:
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Let a differential operator standing on the left-hand side of Eq. (10) be G(�). The following
functional space H2

0 Oð Þ is introduced, which is the closure of the function set:

V ¼ FACN Oð Þ Fj ¼
@2F

@n2
¼ 0 on S

� �
:

If it is possible to prove that for an arbitrary function w from an energy space of the problem,

Eq. (10) is solvable because of F in H2
0 Oð Þ; then F may be extracted from system (1) and therefore

the problem dimension may be reduced (see Appendix A).
In order to analyze oscillations of shells with transverse deformation and rotary inertia and in

order to take into account a rotation energy the following bilinear form is introduced:

bh ~uu; ~vvð Þ ¼
Z
O

hw *w þ 2
3
h3gx*gx þ 2

3
h3gy*gy


 �
dO; ð11Þ

which is proportional to a shell kinetic energy.
It is simple to check using Eq. (11) that the form bh ~uu; ~vvð Þ is also symmetric, positive and

continuous.
Consider now the problem related to free oscillations of shells with transverse deformation and

rotary inertia from another point of view. The functions w, gx, gy (which are simultaneously not
identically equal to zero) can be found such that the full energy on an arbitrarily taken and
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kinematically allowed virtual displacement ~vv ¼ *w; *gx; *gy

� �
is equal to zero. It means that

ah ~uu; ~vvð Þ ¼ o2bh ~uu; ~vvð Þ for every ~vvAV0: ð12Þ

Therefore, the problem of finding the free vibrations spectra of a shell is reduced to the classical
problem of eigenvalues [24]. The results, which are similar to those given in Ref. [25] for a plate,
are given in Appendix B.

2.2. Finite-dimensional approximation of shells with transverse deformation and rotary inertia

2.2.1. General remarks and comparison of the methods

The definition of dynamic characteristics, and particularly of frequency spectra of free
oscillations of plates and shells using the Kirchhoff–Love model leads to a complicated problem
[25]. After transition to more appropriate models such as shells with transverse deformation and
rotary inertia the difficulties even increase. These are caused by complexity of the differential
equations. It is mainly because the latter has two more unknown functions (gx and gy) in
comparison to the Kirchhoff-Love equations.
Since shells with transverse deformation and rotary inertia have four unknowns, the

number of algebraic equations increases four times, which leads to some serious numerical
difficulties.
For all problems considered in this paper it is assumed that the coefficients Aijmk, aijmk and the

curvatures kx, ky do not depend on ðx; yÞAO; and the thickness function h(x, y) is symmetric in
relation to the co-ordinate axes which originate from the centre of a plate.
It seems that the most suitable methods of solving the mentioned problems are the

Kantorovitch method, the variational iterations method (MVI) and the Bubnov–
Galerkin method with high order approximations (MB) [25]. The first two methods reduce
the original two-dimensional problem to one-dimensional. Therefore, it is possible to decrease
the number of the algebraic equations. In order to solve one-dimensional problems, the
finite difference, as well as the finite element, methods may be used. Two important MVI
and MB methods for analysis of plates and shells with variable thickness will now be
discussed.

2.2.2. MVI approximation

The method of variational iterations applied to problems related to dynamics consists of the
following steps.
Suppose that free vibration frequencies of a shell is to be determined from the equations

Z½h	~uu � o2M½h	~uu ¼ 0; ð13Þ

using the corresponding boundary conditions.~uuAV0 are kinematics allowed displacements and let
O ¼ ½0; l1	 
 ½0; l2	: Assume that the solution being sought has the following form:

~uuðx; yÞE
XN

i¼1

~uu1i ðxÞ#~uu2i ðyÞ; N ¼ 1; 2;y; ð14Þ
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where ~uu1i ðxÞ#~uu2i ðyÞ is the vector with the components w1i ðxÞw
2
i ðyÞ; g1xiðxÞg

2
xiðyÞ; g1yiðxÞg

2
yiðyÞ:

Substituting Eq. (14) into Eq. (13) gives

XN

i¼1

Z½h	~uu1i ðxÞ#~uu2i ðyÞ ¼ o2
XN

i¼1

M½h	~uu1i ðxÞ#~uu2i ðyÞ: ð15Þ

Applying the Bubnov–Galerkin method, Eqs. (15) are projected on the functions f~uu1j ðxÞg
N
j¼1 and

f~uu2j ðyÞg
N
j¼1: As a result, this gives 2N differential equations of the form
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In order to solve Eqs. (16) and (17) the iteration method will be used. As the first step, an initial

approximation of ~uu1i ðxÞ; i ¼ 1; 2;y;N is carried out and then they are substituted into Eq. (16).

Thus, a set of N linear ordinary differential equations with respect to the unknown functions

~uu2i ðyÞ; i ¼ 1; 2;y;N; is obtained. The system obtained has a non-zero solution only for certain

discrete values of o2k; which can be treated as the first approximation to the free oscillation
frequencies of a shell being sought. The corresponding modes are denoted by f~uu2ikðyÞg

N
i¼1: The

obtained functions f~uu2ikðyÞg
N
i¼1 for certain k (temporarily fixed) are substituted into Eq. (17). As a

result, N linear ordinary homogeneous equations with respect to f~uu1i ðxÞg
N
i¼1 are obtained, which

give o2km: For a fixed m number the corresponding functions f~uu1imðxÞg
N
i¼1 are substituted into

Eq. (16) and then the process is repeated.
The iteration are carried out in two steps. The iteration convergence process may be controlled

during each step, or after the step when o2km is obtained.
The iteration result for each k and m is o2km and the corresponding vibration modes are

~uukmðx; yÞ ¼
XN

i¼1

~uu1imðxÞ#~uu2ikðyÞ: ð18Þ

Z[h] operator includes the G�1ðr2
;kwÞ one. It means that during each step of the variational

iterations the relation defined by Eq. (A.2) should be taken into account. For the approximation
of that equation the same variational iteration algorithm is used.

2.2.3. Bubnov–Galerkin approximation
In the variational iteration method the basis functions ~uu1i ðxÞ and ~uu

2
i ðyÞ are not given a priori and

they are found by means of optimal solutions. On the other hand, the Bubnov–Galerkin method
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assumes

~uuðx; yÞE
XN

i;j¼1

~ff ij~uu
1
i ðxÞ#~uu2j ðyÞ; ð19Þ

where ~uu1i ðxÞ and ~uu
2
j ðyÞ are a priori given systems of independent linear functions satisfying specific

boundary conditions and closure properties. Substituting Eq. (19) into Eq. (13) and projecting the

system of equations obtained in ~uu1l ðxÞ#~uu2pðyÞ the following system of homogeneous algebraic

equations are obtained:XN

i;j¼1

~ff ij
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The condition of a non-zero solution to system (20) gives N2 approximate values of the okm plate
frequencies (k;m ¼ 1; 2;y;N).

2.2.4. Convergence of MVI and MB approximations
Convergence of the MVI method applied to free vibration analysis problems has not yet been

investigated. The MVI convergence for positively defined and symmetric operators has been
already proved [27, 28]. The MVI convergence in the problems related to free vibration analysis is
ilustrated. Let the operators Z[h] and M[h] be positively defined in earlier Eq. (13). According to
Theorem A.2 (see Appendix A), this condition is satisfied. It has been shown earlier that the
problem has been reduced to the definition of the eigenfunction of ordinary differential equations
(16) and (17).
Following Ref. [27] the MVI calculation step is taken from ~uu1i ðxÞ

 �ðpÞ
(or ~uu2i ðyÞ

 �ðpÞ
) to

~uu2i ðyÞ
 �ðpþ1Þ
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 �ðpþ1Þ

), respectively.

For a given and fixed N after p steps (analogous to Eq. (18)) free oscillation frequencies oðp;NÞ
km
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They satisfy the following equations:XN
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ð j ¼ 1; 2; :::;NÞ: ð22Þ

The frequencies are estimated using Theorem C.1 (see Appendix C).
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Using the results included in Appendix C it may be concluded that in all cases where MB is
convergent, MVI is also convergent but slower than MB one (see Eq. (C.4)).
The formulated theoretical basis serves for preparation of suitable algorithms for MB and

MVI.

2.3. Algorithms for MB and MVI

In order to find the free vibrations of a rectangular O ¼ ½0; l1	 
 ½0; l2	 for shells with transverse
deformation and rotary inertia, both MB and MVI methods will be applied and the
corresponding algorithms will be formulated with the assumption that h ¼ hðx; yÞ:
Consider Eqs. (13). Introduce the following dimensionless quantities [22, 23]:

%x ¼ x=l1; %y ¼ y=l2; l ¼ l1=l2; %h ¼ h=h0; l1 ¼ l1=2h0; l2 ¼ l2=2h0;

%w ¼ w=2h0; %gx ¼ l1gx; %gy ¼ l2gy; %Aijkl ¼ Aijkl=A1111;

%aijkl ¼ aijkl  A1111; %l1 ¼ l22 %A1313; %l2 ¼ l21 %A2323; %kx ¼ kxl21=2h0;

%ky ¼ kyl22=2h0; %F ¼ F= 8h30A1111
� �

; %o2 ¼ l21 l
2
2ro

2= 8h30A1111
� �

:

The non-dimensional set of equations obtained has the following form (bars have been
omitted):
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Consider the following boundary conditions:

(a) a movable support: w ¼ gx ¼ gy ¼ F ¼
@2F

@n2

����
S

¼ 0;
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(b) a rolling support: w ¼ F ¼
@2F

@n2

����
S

¼ 0; gy ¼ M11 ¼ 0 for x ¼ const; gx ¼ M22 ¼ 0 for y ¼
const; and assume that

w ¼ w1ðxÞ  w2ðyÞ; gx ¼ j1ðxÞ  j2ðyÞ; gy ¼ c1ðxÞ  c2ðyÞ;

F ¼ F1ðxÞ  F2ðyÞ:
ð27Þ

Substituting Eq. (27) into Eqs. (23)–(26) gives
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3
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3
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2
3
%l2w1ðhw2;yÞ;y þ o2hw1w2 ¼ 0; ð28Þ
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� 2
3
%l2hw1w2;y � 2
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1
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l�22 o2h3c1c2 ¼ 0; ð30Þ

w1ðkxw2Þ;yy þ w2ðkyw1Þ;xx þ l�4a1111F2ðh�1F1;xxÞ;xx þ a1122F2;yyðh�1F1Þ;xx þ a1122F1;xxðh�1F2Þ;yy

þ l4a2222F1ðh�1F2;yyÞ;yy � a1212ðh�1F1;xF2;yÞ;xy ¼ 0: ð31Þ

Let w1, j1, c1 and F1 be known. Then, multiplying Eqs. (28)–(31) by w1, j1, c1, F1, respectively
and integrating in the interval [0, 1] in regard to x, one gets the following differential equations
with respect to w2, j2, c2 and F2:
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kxF1w1 dx þ F2

Z 1

0

kyF1;xxw1 dx þ 2
3
%l1j2

Z 1

0

ðhj1Þ;xw1 dx

þ 2
3
%l1w2

Z 1

0

ðhw1;xÞ;xw1 dx þ 2
3
%l2 c2

Z 1

0

hc1w1 dx

� �
;y

þ 2
3
%l2 w2;y

Z 1

0

hw1w1 dx

� �
;y

þo2w2

Z 1

0

hw1w1 dx ¼ 0; ð32Þ

1
12
l�2A1111j2

Z 1

0

ðh3j1;xÞ;xj1 dx þ 1
12

A1122c2;y

Z 1

0

ðh3c1Þ;xj1 dx

þ 1
12A1212 c2

Z 1

0

h3c1;xj1 dx

� �
;y

þ 1
12A1212 j2;y

Z 1

0

h3j1j1 dx

� �
;y

� 2
3
%l1j2

Z 1

0

hj1j1 dx � 2
3
%l1w2

Z 1

0

hw1;xj1 dx þ
o2

12
l�21 j2

Z 1

0

h3j1j1 dx ¼ 0; ð33Þ
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1
12
l2A2222 c2;y

Z 1

0

h3c1c1 dx

� �
;y

þ 1
12

A1122 j2

Z 1

0

h3j1;xc1 dx

� �
;y

þ 1
12

A1212j2;y

Z 1

0

ðh3j1Þ;xc1 dx þ 1
12

A1212c2

Z 1

0

ðh3c1;xÞ;xc1 dx

� 2
3
%l2c2

Z 1

0

h c1c1 dx � 2
3
%l2w2;y

Z 1

0

hw1c1 dx þ
o2

12
l�22 c2

Z 1

0

h3c1c1 dx ¼ 0; ð34Þ

w2

Z 1

0

kxw1F1 dx

� �
;yy

þw2

Z 1

0

ðkyw1Þ;xxF1 dx þ l�4a1111F2

Z 1

0

ðh�1F1;xxÞ;xxF1 dx

þ a1122F2;yy

Z 1

0

ðh�1F1Þ;xxF1 dx þ a1122 F2

Z 1

0

h�1F1;xxF1 dx

� �
;yy

þ l4a2222 F2;yy

Z 1

0

h�1F1F1 dx

� �
;yy

�a1212 F2;y

Z 1

0

ðh�1F1;xÞ;xF1 dx

� �
;y

¼ 0: ð35Þ

Proceeding in a similar way, the following equation system, with w1, j1, c1 and F1 being sought is
obtained assuming that w2, j2, c2 and F2 are known:

F1

Z 1

0

kxF2;yyw2 dy þ F1;xx

Z 1

0

kyF2w2 dy þ 2
3
%l1 j1

Z 1

0

hj2w2 dy

� �
;x

þ 2
3
%l1 w1;x

Z 1

0

hw2w2 dy

� �
;x

þ2
3
%l2c1

Z 1

0

ðhc2Þ;yw2 dy

þ 2
3
%l2w1

Z 1

0

ðhw2;yÞ;yw2 dy þ o2w1

Z 1

0

hw2w2 dy ¼ 0; ð36Þ

1
12
l�2A1111 j1;x

Z 1

0

h3j2j2 dy

� �
;x

þ 1
12

A1122 c1

Z 1

0

h3c2;yj2 dy

� �
;x

þ 1
12A1212c1;x

Z 1

0

ðh3c2Þ;yj2 dy þ 1
12A1212j1

Z 1

0

ðh3j2;yÞ;yj2 dy

� 2
3
%l1j1

Z 1

0

hj2j2 dy � 2
3
%l1w1;x

Z 1

0

hw2j2 dy þ
o2

12
l�21 j1

Z 1

0

h3j2j2 dy ¼ 0; ð37Þ

1
12
l2A2222c1

Z 1

0

ðh3c2;yÞ;yc2 dy þ 1
12

A1122j1;x

Z 1

0

ðh3j2Þ;yc2 dy

þ 1
12A1212 j1

Z 1

0

h3j2;yc2 dy

� �
;x

þ 1
12A1212 c1;x

Z 1

0

h3c2c2 dy

� �
;x

� 2
3
%l2 c1

Z 1

0

hc2c2 dy � 2
3
%l2w1

Z 1

0

hw2;yc2 dy þ
o2

12
l�22 c1

Z 1

0

h3c2c2 dy ¼ 0; ð38Þ
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w1

Z 1

0

ðkxw2Þ;yyF2 dy þ w1

Z 1

0

kyw2F2 dy

� �
;xx

þl�4a1111 F1;xx

Z 1

0

h�1F2F2 dy

� �
;xx

þ a1122 F1

Z 1

0

h�1F2;yyF2 dy

� �
;xx

þa1122F1;xx

Z 1

0

ðh�1F2Þ;yyF2 dy

þ l4a2222F1ðh�1F2;yyÞ;yyF2 dy � a1212 F1;x

Z 1

0

ðh�1F2;yÞ;yF2 dy

� �
;x

¼ 0: ð39Þ

Eight equations (32)–(39) form a non-linear system of the integral–differential equations with
respect to the unknown functions w1, j1, c1, F1, w2, j2, c2, F2. In order to abbreviate the
equations the following notation in used:

Aðf ; u; v; k; mÞ ¼
Z 1

0

f
dku

dxk

dmv

dxm
dx: ð40Þ

Integrating by parts (when it is possible), and taking into account the boundary conditions and
Eq. (40), Eqs. (32)–(39) can be re-written in a more suitable form

F1A kx; F2; w2; 2; 0ð Þ þ F1;xxA ky; F2; w2; 0; 0
� �

þ 2
3
%l1ðj1Aðh; j2; w2; 0; 0ÞÞ;x

þ 2
3
%l1ðw1;xAðh; w2; w2; 0; 0ÞÞ;x �

2
3
%l2c1A h; c2; w2; 0; 1

� �
� 2
3
%l2w1A h; w2; w2; 1; 1ð Þ þ o2w1A h; w2; w2; 0; 0ð Þ ¼ 0; ð41Þ

1
12
l�2A1111ðj1;xAðh3; j2; j2; 0; 0ÞÞ;x þ

1
12

A1122ðc1Aðh3; c2; j2; 1; 0ÞÞ;x
� 1
12

A1212c1;xAðh3; c2; j2; 0; 1Þ �
1
12

A1212j1Aðh3; j2; j2; 1; 1Þ

� 2
3
%l1j1Aðh; j2; j2; 0; 0Þ �

2
3
%l1w1;xAðh; w2; j2; 0; 0Þ

þ 1
12
l�21 o2j2Aðh3; j2; j2; 0; 0Þ ¼ 0; ð42Þ

1
12

A1212ðc1;xAðh3; c2; c2; 0; 0ÞÞ;x �
1
12

A1122j1;xAðh3; j2; c2; 0; 1Þ

þ 1
12

A1212ðj1Aðh3; j2; c2; 1; 0ÞÞ;x �
1
12
l2A2222c1Aðh3; c2; c2; 1; 1Þ

� 2
3
%l2 c1Aðh; c2; c2; 0; 0Þ �

2
3
%l2w1Aðh; w2; c2; 1; 0Þ

þ 1
12
l�22 o2c1Aðh3; c2; c2; 0; 0Þ ¼ 0; ð43Þ

w1Aðkx;w2;F2; 0; 2Þ þ ðw1Aðky;w2;F2; 0; 0ÞÞ;xx

þ l�4a1111ðF1;xxAðh�1;F2;F2; 0; 0ÞÞ;xx

þ a1122ðF1Aðh�1;F2;F2; 2; 0ÞÞ;xx þ a1122F1;xxAðh�1;F2;F2; 0; 2Þ

þ l4a2222F1Aðh�1;F2;F2; 2; 2Þ � a1212ðF1;xAðh�1;F2;F2; 1; 1ÞÞ;x ¼ 0; ð44Þ
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F2;yyA kx;F1;w1; 0; 0ð Þ þ F2A ky;F1;w1; 2; 0
� �

� 2
3
%l1j2Aðh;j1;w1; 0; 1Þ

� 2
3
%l1w2Aðh;w1;w1; 1; 1Þ þ 2

3
%l2ðc2Aðh;c1;w1; 0; 0ÞÞ;y

þ 2
3
%l2ðw2;yAðh;w1;w1; 0; 0ÞÞ;y þ o2w2A h;w1;w1; 0; 0ð Þ ¼ 0; ð45Þ

� 1
12
l�2A1111j2Aðh3;j1;j1; 1; 1Þ �

1
12

A1122c2;yAðh3;c1;j1; 0; 1Þ

þ 1
12

A1212ðc2Aðh3;c1;j1; 1; 0ÞÞ;y
þ 1
12

A1212ðj2;yAðh3;j1;j1; 0; 0ÞÞ;y �
2
3
%l1j2Aðh;j1;j1; 0; 0Þ

� 2
3
%l1w2Aðh;w1;j1; 1; 0Þ þ

1
12
o2l�21 j2Aðh3;j1;j1; 0; 0Þ ¼ 0; ð46Þ

� 1
12

A1212c2Aðh3;c1;c1; 1; 1Þ þ
1
12

A1122ðj2Aðh3;j1;c1; 1; 0ÞÞ;y
� 1
12

A1212j2;yAðh3;j1;c1; 0; 1Þ

þ 1
12
l2A2222ðc2;yAðh3;c1;c1; 0; 0ÞÞ;y �

2
3
%l2 c2Aðh;c1;c1; 0; 0Þ

� 2
3
%l2w2;yAðh;w1;c1; 0; 0Þ þ

1
12
o2l�22 c2Aðh3;c1;c1; 0; 0Þ ¼ 0; ð47Þ

ðw2Aðkx;w1;F1; 0; 0ÞÞ;yy þ w2Aðky;w1;F1; 0; 2Þ

þ l�4a1111F2Aðh�1;F1;F1; 2; 2Þ þ a1122F2;yyAðh�1;F1;F1; 0; 2Þ

þ a1122ðF2Aðh�1;F1;F1; 2; 0ÞÞ;yy þ l4a2222ðF2;yAðh�1;F1;F1; 0; 0ÞÞ;yy

� a1212ðF2;yAðh�1;F1;F1; 1; 1ÞÞ;y ¼ 0: ð48Þ

The finite element method of the second order [26, 28, 29] is used to solve the ordinary differential
equations obtained. A detailed description of application of FEM to this problem is given in
Appendix D.
During formulation of the stiffness and mass matrices (see Ce

i and De
i in Appendix D) it is

necessary to calculate the integrals in the rectangular spaces Oe ¼ ½0; 1	 
 De:Z
De

A f ; u; v; p; qð Þxe
kx

e0

mdy ¼
Z
De

Z 1

0

f x; yð Þ
@puðxÞ
@xp

@qvðxÞ
@xq

xe
kðyÞx

e0

mðyÞ dy dx;

with the corresponding change of the variables in f ðx; yÞ: For this purpose, a two-dimensional
formula (similar to the Simpson formula) may be used.
The algorithm presented has been used to define the elements of the local matrices of stiffness

Ce
i and mass De

i :

3. Numerical results

In Fig. 1 a distribution for four elements in interval [0, 1], where ‘e’ is the element number, is
shown. For each element local numbers are given above, whereas below the global numbers are
presented below. As it has been shown (in the one-dimensional case) the global numbers are
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related to the local numbers and to the finite element number in the following manner:

ig ¼ il þ 2 ðe � 1Þ: ð49Þ

The above formula is used for an arrangement of the obtained elements of the local matrices Ce
i

and De
i obtained on the corresponding places in the global matrices Ci and Di to realize their

calculation sequence. The algorithm action is composed of one iteration variational step and
FEM results in matrices Ci and Di for i ¼ 1 or i ¼ 2: The boundary conditions are realized by
cancelling the columns and the rows corresponding to the given variable w, gx, gy, F on the
boundaries from the Ci and Di matrices. The boundary conditions of the type M11 ¼ M22 ¼ 0;
@2F=@n2 ¼ 0 are introduced automatically, because the algorithm uses a stationary energy
deformation. It means that the algorithm is variational.
The eigenvalues of the generalized problems are obtained from the equation

Ci~uui � o2Di~uui ¼ 0; i ¼ 1 or i ¼ 2; ð50Þ

where ~uui ¼ w1i ;w
2
i ; :::;w

N
i ;j

1
i ;j

2
i ; :::;j

N
i ;c

1
i ; :::;c

N
i ;F

1
i ; :::;F

N
i

� �
are the functions wi, ji, ci, and Fi in

the global nodes j ¼ 1; 2;y;N; being sought.
In order to solve Eq. (50) the Schwartz iteration method has been used [30]. This method is

particularly effective for low-frequency vibrations.
Suppose that fundamental (the lowest) free vibration frequencies are to be determined.

Assuming the ~uuðnÞ
i value the following equation can be solved:

Ci~uu
ðnþ1Þ
i ¼ Di~uu

ðnÞ
i : ð51Þ

Substituting the solution obtained again into the right-hand side of Eq. (51), gives ~uuðnþ2Þ
i ; and so

on. In each step the approximated value of the fundamental frequency o2n may be obtained from
the Rayleigh formula:

o2n ¼
~uuðnþ1Þ

i Ci~uu
ðnþ1Þ
i

~uuðnþ1Þ
i Di~uu

ðnþ1Þ
i

: ð52Þ

The process is controlled because of the difference between o2n and o2nþ1: The algorithm has been
described in detail in Ref. [24], where its convergence has been proved.
The convergence of the finite elements method results from the bilinear forms ahð~uu;~vvÞ and

bhð~uu;~vvÞ properties, proved in Theorem A.2 (see Appendix A) and the respective theorems for the
second order finite elements [28, 30].
A convergence of MB has been illustrated in Figs. 2 and 3, where a solid line corresponds to a

rolling support, and a dashed line corresponds to a clamped support.
As it is seen from the figures, the convergence is practically achieved for N ¼ 12 for MVI and

for M ¼ 18 for MB. However, an error of frequency determination for the MVI method with
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regard to the MB method (Fig. 2) does not tend towards zero, but it achieves 1.9% for a clamped
(stiff) support, and 2.3% for the rolling support. The reason is that in MVI only one factor in the
function distribution (29) has been taken into account.
In order to verify the applications range and to compare the free vibration frequencies of a plate

with a rolling support the calculations using the MVI and MB methods have been carried out for
the physical-geometrical parameter %l1 ¼ %l2 within the interval [0.25; 2500] for n ¼ 0:25 and l1 ¼
l2 within the interval [100,1]. The obtained dependence has been shown in Fig. 4.
Analysis of the results obtained leads to the following general conclusions. The frequencies,

obtained using the first approximation of the MVI beginning from %l1 ¼ %l2 ¼ 25; differ by no
more than 5%, since only one term has been taken into account by MVI. However, for %l1 ¼
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Fig. 2. Estimation error of fundamental frequency using MVI in relation to frequency oB defined by MB.

Fig. 3. Illustration of MB method convergence for a clamped and free supported plate.
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%l2p25 they are very close to each other and for %l1 ¼ %l2 ¼ 0:25 they fully overlap. It means that
for plates with low transverse stiffness one can apply MVI, which needs lower time computations
in comparison to MB.

3.1. Test of algorithms

In order to carry out algorithm tests relating to the free vibration frequencies obtained using the
MVI and the MB methods, first the plates with constant thickness (equal to 1) for l1 ¼ l2 ¼ 2; 5;
and for differentG13=E ¼ G23=E and for G=EA½0; 4; 0; 01	 have been analyzed. The parameters
considered correspond to the properties of composite materials currently used [31], such as, for

the plastic-glass material G=E ¼ 1
7
[32], for the borplastic G=E ¼ 1

25
; for the graphitoplastic G=E ¼

1
40
: A material for which G=E ¼ 1

100
[32, 33] also exists.

During the analysis of the algorithm convergence, fundamental frequencies of a vibrating plate
with constant thickness for n ¼ 0:25; l1 ¼ l2 ¼ 2:5 for the isotropic material (G=E ¼ 0:4) have
been found (%l1 ¼ %l2 ¼ 2:34375).
In Fig. 2 an error dependence on the fundamental mode calculation using the MVI in the first

approximation versus the finite elements number N along the x- and y-axis, has been shown. The
oB denotes a frequency of the fundamental mode obtained using the MB for M ¼ 27 (9 terms for
each function).

4. Plates and shells mass optimization with free vibration frequency constraints

Assume that a shell with variable thickness occupies a bounded space O with a piecewise smooth
edge S. Free vibration of this shell are governed by Eqs (1) with boundary conditions (2)–(5).

ARTICLE IN PRESS

Fig. 4. Comparison of different methods using free support for %lAð0:25; 2500Þ:

J. Awrejcewicz, V.A. Krysko / Journal of Sound and Vibration 264 (2003) 343–376 357



Consider the following problem. Among all possible material distributions within a shell,
described by the thickness function hðx; yÞ it is required to determine the hnðx; yÞ from a given set
of functions U@ (defined later) in order to minimize the shell’s mass and to get the fundamental
frequency is the same as for the shell with constant thickness equal to 1.
This problem may also be formulated in a slightly different manner. For a given shell mass mn it

is required to find the distribution hn
@ðx; yÞ in order to achieve the maximum frequency of the

fundamental mode. It can be proved that for shells with transverse deformation and rotary inertia
the two approaches described are equivalent.
Therefore, the problem is reduced to that of minimalization with the constraints

hnðx; yÞ : -min
hAU@

Z
O
rdO; o ¼ o0; ð53Þ

where o denotes the fundamental mode frequency found from Eqs. (2)–(5), and o0 is free
vibration frequency of the plate with constant thickness hðx; yÞR1:
Using a penalty method it is possible to avoid the explicit constraint o ¼ o0: As a result,

problem (53) is reduced to the following:

hn

e ðx; yÞ : -min
hAU@

Z
O
rh dOþ

1

e
o� o0ð Þ2

� �
; ð54Þ

where o again is defined by Eqs. (2)–(5). Using the approach presented in Ref. [34] it can be
shown that for a defined choice of the set U@ the solution hn

e ðx; yÞ of Eq. (54) tends to hnðx; yÞ for
e-0:
However, in the majority of cases occurring in practice it is not necessary to have the exact

relation o ¼ o0; and therefore without the condition of e-0 there is still a practically valid
relation. Similar problems are called the e-optimization problems or the rational design problems
and they will be considered further.
Define a set of admissible functions hðx; yÞ; called the set of admissible control

U@ ¼ hðx; yÞ j hAH1 Oð Þ; hj j1;Opconst; 0ohHphðx; yÞphB

 �
: ð55Þ

In the case of the admissible functions, the functions with piecewise continuous first derivatives
and bounded above and below are taken.
A choice of the admissible control (55) guarantees a solution to problem (54), which is defined

by the following theorem (proof is omitted).

Theorem 1. If assumptions (6)–(8) are satisfied and kx and ky are bounded on O, then the rational

design problem (54) defined on U@ according to Eq. (55) has at least one solution for an arbitrarily
taken e > 0:

The obtained result is valid not only from the point of view of different designs, but also from
the point of view of the hðx; yÞ approximation. If hðx; yÞAU@ then during a construction of the
finite approximation hðx; yÞ the approximation function is required to belong to the U@ interior.
Otherwise, the process may not be convergent.
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5. Finite-dimensional approximations of the rational design of plates and shells

5.1. Finite-dimensional approximation

The problem dealing with the finite-dimensional approximation is particularly important for
optimal design of plates and shells. It is evident that there are no analytical solutions in the
majority of tasks devoted to design [35]. The only possible solutions are approximate ones
obtained using the numerical methods.
In the following considerations problem (53) is omitted and the rational design defined by

Eq. (54) for a given e is considered. A solution to problem (53), as has been mentioned earlier,
may be obtained for e-0: For an engineering calculation purpose it is sufficient to take a small
number as e: Now, the questions considered are concerned with the occurrence of approximated
solutions on the finite-dimensional subspaces U@ and their convergence.
It will be shown that the frequency of the fundamental mode of a shells with transverse

deformation and rotary inertia is a weakly continuous functional for all hAU@ (U@ is defined by

Eq. (55)). Taking into account that o2 is defined by the Rayleigh formula (52), this result will be
formulated as the following theorem (proof is omitted).

Theorem 2. The functional

jðhÞ ¼ o2 ¼ inf
~uuAV0

ah ~uu;~uuð Þ
bh ~uu;~uuð Þ

is a weakly continuous transformation from U@ to R1:

Thus, the problem is reduced to a construction of the finite-dimensional subspaces of functions
from U@ and having convergence properties. Otherwise, a situation may occur for which it will be
extremely difficult to achieve a minimum of the functional

JðhÞ ¼
Z
O
rh dOþ

1

e
o2 � o20
� �2

: ð56Þ

Select a series of the finite-dimensional subspaces Hnf gNn¼1 in such a way that for an arbitrary n

HnCH1ðOÞ and

lim
n-N

inf
gAHn-U@

g � h1j j1;O¼ 0; 8h1AU@: ð57Þ

In other words, an arbitrary function h1AU@ should approach the norm of H1ðOÞ through the
functions gnAHn-U@ with an arbitrarily given accuracy for n-N: Now, reduce the problem of
the rational design of a plate in regard to its mass with a given constraint for its fundamental
frequency o to the following finite-dimensional programming problem. Find hn

nAHn-U@ and the

corresponding on; ~uunAV0 so that

J hn

n

� �
¼ inf

hAHn-U@

JðhÞ; n ¼ 1; 2;y; ð58Þ

where JðhÞ is defined by Eq. (56). A rigorous discussion of solution to problem (58) is omitted
here.
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It often happens that from a point of view of technology engineering imagination and the
second order constraints, the U@ set of the thickness distribution functions is chosen as finite
dimensional. It deals with those functions depending on finite numbers of parameters or the
functions represented by finite series pieces because of the known function choice [25]. At the first
glance, the cases occurring are already finite dimensional, and therefore, a question related to
convergence and approximation does not appear. However, it is not entirely true. Let us take into
account the function hðx; yÞ in one of the earlier discussed forms and substitute it in system (1).
Applying one of the numerical methods for the determination of o and ~uu; the necessity of
approximating hðx; yÞ is approached, as is a given set of parameters which define this function.
Which conditions should be satisfied for the assumed approximation scheme? The approximation
should satisfy condition (57).
The methods which satisfy these conditions are: the finite element method, the mesh method

with OðhaÞ approximation, aX1; and many others. In the case of application of the Kirchhoff–
Love model, it is necessary to apply the finite elements securing not only hðx; yÞ continuity but also
continuity of its first partial derivatives, which of course is difficult to be realized numerically.

6. Conclusions

The conclusions include the following main parts:
(i) Investigation of inertial effect influence: Comparing the two results obtained with the results

given in Ref. [23] (the dashed line in Fig. 4) obtained using the MB method with higher
approximations and without inertial effects related to rotation, the following conclusions are
drawn. The inertial effect related to rotation decreases the frequency by 12% for %l1 ¼ %l2 ¼ 0:25
and by 9% for %l1 ¼ %l2 ¼ 2500: It means that this effect must be taken into account during
transversal-isotropic plates analysis.
Analogous results have been obtained for plates with changing thickness according to the

exponential law

hðx; yÞ ¼ z1 þ z2e
z3ðx2þy2Þ: ð59Þ

In Fig. 5 the curves of such dependences with the rolling plate support for %l1 ¼ %l2; z1 ¼ 0:4;
z2 ¼ 0:02; z3 ¼ 3 obtained using the MB (dashed line) and the MVI (solid line) for l1 ¼ l2 ¼ 2:5
and %l1 ¼ %l2A½2:5; 0:0625	 have been shown.
(ii) Investigation of boundary conditions influence for plates having low transverse stiffness:

Decreasing transversal stiffness should cause a decrease of the area of boundary effects. It is
expected that the influence of the boundary conditions on free vibration frequencies should also
be decreased. This behaviour of the fundamental mode for plates with %l1 ¼ %l2A½0:0625; 0:25	 is
analyzed for different thicknesses and for l1 ¼ l2 ¼ 2:5: In Fig. 6 the dependences o versus
%l1 ¼ %l2 for different h have been shown. Curves 1 are related to plates with h ¼ 1; curves 2 to
plates with h ¼ 0:25 (the solid lines correspond to stiffly supported plate, whereas the dashed lines
correspond to rolling supported plate). The results have been obtained using the MVI for N ¼ 12:
As it can be seen from Fig. 6, decreasing the transversal stiffness for both supports, results in

the fundamental frequencies approaching each other independent of the thickness. For %l ¼ 0:25
they differ by 10% for h ¼ 0:25 and by 1% for h ¼ 1: Therefore, one can conclude that for thick
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plates with low transverse stiffness the support conditions influence only slightly free vibration
frequencies obtained using shells with the transverse deformation and rotary inertia model.
(iii) Investigation of plate thickness influence for different transversal stiffness: In Fig. 2, contrary

to the previous one, an example of approaching tune frequencies of the fundamental modes for
different thickness and low transverse stiffness has been presented. This effect is analyzed in detail.
In Fig. 7, the dependences o versus h for different %l1 ¼ %l2 and for l1 ¼ l2 ¼ 2:5; n ¼ 0:25 have
been shown. This case corresponds to the rolling support of the plate. Analogous dependences are
shown in Fig. 8 for a stiffly supported plate.
Analysis of the diagrams leads to the conclusion that for plates with low transverse stiffness

%l1 ¼ %l2p0:25 the fundamental mode frequency weakly depends on a plate thickness. For
instance, for %l1 ¼ %l2 ¼ 0:25 the frequencies for h ¼ 2 and 0.5 for plates with a rolling support
differ by 4%, whereas for plates with a stiff support they differ by 2%.
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Fig. 5. Frequency of vibrations of a roller supported plate and exponentially changeable thickness h using the MVI and

MB methods.

Fig. 6. Frequency of vibrations of a plate with different thickness h defined by the MVI method for N ¼ 12:
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Finally, the finite-dimensional approximations of the rational design of plates and shells is also
formally discussed.

Appendix A

Theorem A.1. If conditions (6) and (8) are satisfied, then the G operator is symmetric, continuous

and positively defined in H2
0 Oð Þ:

Proof. Because G is a linear operator, its continuity results directly from its boundness on H2
0 Oð Þ:

Symmetry of G is obvious, whereas a positive definition results from Ref. [34] using assumptions
(6) and (8). &

According to Theorem 1 G is the homoeomorphism transformation from H2
0 Oð Þ into H�2 Oð Þ:

The inverse operator G�1 is continuous and symmetric.
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Fig. 7. Frequency of a roller supported plate versus its thickness h.

Fig. 8. Frequency of a stiffly supported plate versus its thickness h.
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Let us introduce a functional-vector space

V0 ¼ ~uu ¼ w; gx; gy

� �
A H1 Oð Þ
� �3��� wðS1þS2Þ ¼ 0; gtðS2þS3Þ ¼ 0; gnðS3Þ ¼ 0

n o
:

If ~uuAV0; then wAH1ðOÞ: Therefore, for bounded in O curvatures kx and ky we have

r2
;kw ¼

@2

@y2
kxwð Þ þ

@2

@x2
kyw
� �

AH�2 Oð Þ:

Therefore, a solution (because of F) of Eq. (10) exists which reads

F ¼ G�1 r2
;kw

� �
; FAH2

0 Oð Þ:

Observe that Eqs. (1) can be presented in the following operator form:

Z½h	~uu � o2M½h	~uu ¼ 0; ðA:1Þ

GðF Þ ¼ �r2
;kw; ðA:2Þ

where Z[h] and M[h] are linear differential operators defined by the expressions

Z½h	 ¼

L11 L12 L13

L21 L22 L23

L31 L32 L33

0
B@

1
CA; ðA:3Þ

M½h	 ¼

m11 0 0

0 m22 0

0 0 m33

0
B@

1
CA; ðA:4Þ

L11 ¼ � 2
3

@

@x
A1313h

@ð�Þ
@x

� �
þ

@

@y
A2323h

@ð�Þ
@y

� �� �
þr2

kG�1 r2
;kð�Þ

� �
;

L12 ¼ � 2
3

@

@x
A1313h�ð Þ; L13 ¼ �2

3

@

@y
A2323h�ð Þ; L21 ¼ 2

3
A1313h

@ð�Þ
@x

;

L22 ¼ � 2
3

@

@x
A1111h

3@ð�Þ
@x

� �
þ

@

@y
A1212h

3@ð�Þ
@y

� �� �
þ 2
3
A1313hð�Þ;

L23 ¼ � 2
3

@

@x
A1122h

3@ð�Þ
@y

� �
þ

@

@y
A1212h

3@ð�Þ
@x

� �� �
; L31 ¼ 2

3
A2323h

@ð�Þ
@y

;

L32 ¼ � 2
3

@

@x
A1212h

3@ð�Þ
@y

� �
þ

@

@y
A2211h

3@ð�Þ
@x

� �� �
;

L33 ¼ � 2
3

@

@x
A1212h

3@ð�Þ
@x

� �
þ

@

@y
A2222h

3@ð�Þ
@y

� �� �
þ 2
3
A2323hð�Þ:
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For miiði ¼ 1; 2; 3Þ we get m11 ¼ h;m22 ¼ m33 ¼ 2h3=3: Let us introduce a bilinear form defining a
work on the virtual displacement ~vv ¼ *w; *gx; *gy

� �
ah ~uu;~vvð Þ ¼

Z
O

2

3

�
A1111h

3@gx

@x

@*gx

@x
þ A1122h

3
@gy

@y

@*gx

@x
þ A1122h

3@gx

@x

@*gy

@y

�

þA2222h
3
@gy

@y

@*gy

@y
þ A1212h

3
@gy

@x
þ

@gx

@y

� �
@*gy

@x
þ

@*gx

@y

� ��

þ
2

3
A1313h gx þ

@w

@x

� �
*gx þ

@ *w

@x

� �
þ A2323h gy þ

@w

@y

� �
*gy þ

@ *w

@y

� �� �

þr2
kG�1 r2

;kw
� �

*w
o
dO ðA:5Þ

The following results related to ah ~uu;~vvð Þ hold.

Theorem A.2. Let assumptions (A.6)–(A.9) be satisfied and let kx, ky be bounded in O. Then, the
linear form (A.5) is continuous, symmetric and positive in the V0
V0 space. It means that the

following relations hold:

ah ~uu;~vvð Þj jpc2 ~uuj jV0 ~vvj jV0 ; 8~uu;~vvAV0; ðA:6Þ

ah ~uu;~vvð Þ ¼ ah ~vv;~uuð Þ 8~uu;~vvAV0; ðA:7Þ

ah ~uu;~uuð ÞX0 8~uuAV0; c2 ¼ const > 0: ðA:8Þ

Proof. (A) Continuity: From Eq. (A.5) one gets

ah ~uu;~vvð Þj jp2
3
ABh3B

@gx

@x

����
����
0;O

@*gx

@x

����
����
0;O

þ
@gy

@y

����
����
0;O

@*gx

@x

����
����
0;O

 

þ
@*gy

@y

����
����
0;O

@gx

@x

����
����
0;O

þ
@gy

@y

����
����
0;O

@*gy

@y

����
����
0;O

!
þ G�1 r2

;kw
� �

; r2
;k *w

� ���� ���
þ 2
3
ABhB gx þ

@w

@x

����
����
0;O

*gx þ
@ *w

@x

����
����
0;O

þ gy þ
@w

@y

����
����
0;O

*gy þ
@ *w

@y

����
����
0;O

 !

þ 2
3
ABh3B

@gy

@x
þ

@gx

@y

����
����
0;O

@*gy

@x
þ

@*gx

@y

����
����
0;O

: ðA:9Þ

The last factor of Eq. (A.9) may be transformed into the following form:

G�1 r2
;kw

� �
; r2

;k *w
� ���� ��� ¼ � F ; r2

;k *w
� ���� ��� ¼ r2

kF ; *w
� ��� ��:

Therefore

G�1 r2
;kw

� �
; r2

;k *w
� ���� ���p r2

kF
�� ��

0;O *wj j0;O;

ARTICLE IN PRESS

J. Awrejcewicz, V.A. Krysko / Journal of Sound and Vibration 264 (2003) 343–376364



whereas

r2
kF

�� ��
0;Opconst Fj j0;O:

Because the operator G�1 is bounded in H�2ðOÞ
Fj j2;Opconst: r

2
;kw

�� ��
�2;O

:

Taking into account that r2
;kw

�� ��
�2;O

pconst wj j0;O; for limited kx, ky, we get

G�1 r2
;kw

� �
;r2

;k *w
� ���� ���pconst wj j0;O *wj j0;O: ðA:10Þ

Then, from Eqs. (A.9) and (A.10) we get Eq. (A.6). This proves boundness. Because ah ~uu; ~vvð Þ is
bilinear, this property is equivalent to the continuity.
(B) Symmetry: The first seven terms of Eq. (A.5) are symmetric. Consider the last expressionZ

O
r2

kG�1 r2
;kw

� �
*w dO ¼

Z
O

G�1 r2
;kw

� �
r2

;k *w dO ¼ �
Z
O

Fr2
;k *w dO:

Eq. (A.2) yields Z
O

Fr2
;k *w dO ¼ �

Z
O

FG *F
� �

dO ¼ �
Z
O

G Fð Þ *F dO;

and consequently one getsZ
O
r2

kG�1 r2
;kw

� �
*w dO ¼

Z
O

G Fð Þ *F dO ¼
Z
O
r2

;kwG�1 r2
;k *w

� �
dO ¼

Z
O

wr2
kG�1 r2

;k *w
� �

dO:

This proves the symmetry of the last term of Eq. (A.5).
(C) Positiveness: Let ~uu ¼ ~vv: Then ah ~uu; ~uuð Þ presents a deformation energy

ah ~uu;~uuð Þ ¼
2

3

Z
O

h3 A1111
@gx

@x

� �2
þ2A1122

@gx

@x

@gy

@y
þ A2222

@gy

@y

� �2" #(

þA1212h
3

@gy

@x
þ

@gx

@y

� �2
þA1313h gx þ

@w

@x

� �2
þA2323h gy þ

@w

@y

� �2)
dO

þ
Z
O
r2

kG�1 r2
;kw

� �
w dO:

However, the last term is equal to
R
O G Fð ÞF dO and is positive according to Eq. (8). The

positiveness of the other terms results from Eqs. (6) and (8). &

Appendix B

Theorem B.1. The eigenvalue problem (12) has a discrete series of non-negative eigenvalues lif gNi¼1:
The eigenfunctions (modes) related to different eigenvalues are orthogonal.

Proof. The discreteness of spectra of (12) results from the symmetry of the bilinear forms ah ~uu;~vvð Þ
and bh ~uu;~vvð Þ; and also from the existence of an inversed operator to M[h]. It is an analogous to the
proof given on page 266 in Ref. [25].
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Let us prove the positiveness of li; i ¼ 1; 2;y: Let li be a certain eigenvalue and let ~uui be the
corresponding eigenfunction. Then, taking ~vv ¼ ~uui; we obtain

ah ~uui;~uuið Þ � libh ~uui;~uuið Þ ¼ 0;

or

li ¼
ah ~uui;~uuið Þ
bh ~uui;~uuið Þ

:

Because ah ~uui;~uuið ÞX0 and bh ~uui;~uuið Þ > 0; liX0 for all i ¼ 1; 2;y: Let ~uui and ~uuj be the eigenfunctions

corresponding to li and lj; and lialj: Then we get

ah ~uui;~uuj

� �
� libh ~uui;~uuj

� �
¼ 0; ðB:1Þ

ah ~uuj;~uui

� �
� ljbh ~uuj;~uui

� �
¼ 0: ðB:2Þ

Finding Eq. (B.1) from Eq. (B.2) and taking into account the symmetry of the bilinear forms we
get

lj � li

� �
bh ~uui;~uuj

� �
¼ 0:

Because lialj;
bh ~uui;~uuj

� �
¼ 0: ðB:3Þ

Observe that for the eigenvalue problem (12) the following Rayleigh’s formula holds:

li ¼ min
~uuAV0~uu>uj

ah ~uu;~uuð Þ
bh ~uu;~uuð Þ

; i ¼ 1; 2;y; j ¼ 1; 2;y; i � 1: ðB:4Þ

The sign > denotes the generalized orthogonal operation in the sense of Eq. (B.3), i.e.,

~uu>~uuj3bh ~uu;~uuj

� �
¼ 0:

Eq. (B.4) yields the lowest eigenvalue l1 (or the lowest vibration frequency o21 ¼ l1) defined by

o21 ¼ min
~uuAV0

ah ~uu;~uuð Þ
bh ~uu;~uuð Þ

; ~uu � 0: ðB:5Þ

The values of F corresponding to a certain vibration mode are defined by Eq. (A.2) and have
the form

Fi ¼ �G�1 r2
;kwi

� �
;

where wi is the first component of the displacement vector ~uui corresponding to li ¼ o2i : &

Appendix C

Theorem C.1. Let Z½h	 and M½h	 be positively defined operators 8hAUq in the corresponding

‘energy’ space HðOÞ ðDðMÞCDðZÞCHðOÞÞ: Then, the frequency series oðp;NÞ
11 do not increase in

relation to p for an arbitrarily taken number N. It is bounded from below. The exact value of the first

shell free vibration frequency is equal to frequency oT
11 (a case of higher frequencies is not considered

here).
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Proof. Consider Eq. (22) for k ¼ m ¼ 1: Let us multiply it by~uu2ðpÞj1 ðyÞ; then make a sum because of
j and integrate it because of y in the interval [0, l2]. We can arbitrarily take [24]:Z l1

0

Z l2

0

M½h	~uuðp;NÞ
11 ~uuðp;NÞ

11 dx dy ¼ 1; ðC:1Þ

and we get

oðp;NÞ
11

� �2
¼
Z l1

0

Z l2

0

Z½h	~uuðp;NÞ
11 ~uuðp;NÞ

11 dx dy:

According to the minimalization of the fundamental frequency we have

oT
11

� �2p oðp;NÞ
11

� �2
p
Z l1

0

Z l2

0

Z½h	~vvðx; yÞ~vvðx; yÞ dx dy;

for an arbitrarily taken~vvðx; yÞ with shape (21). It holds only if for~vvðx; yÞ the norm condition (C.1)
is satisfied. In particular, when we take ~vvðx; yÞ ¼ ~uuðp�1;NÞ

11 ðx; yÞ;

oðp;NÞ
11

� �2
p
Z l1

0

Z l2

0

Z½h	~uuðp�1;NÞ
11 ~uuðp�1;NÞ

11 dx dy ¼ oðp�1;NÞ
11

� �2
or

oT
11

� �2p oðp;NÞ
11

� �2
p oðp�1;NÞ

11

� �2
: ðC:2Þ

This proves the theorem. &

Corollary 1. If each element of the base space system H(O) has the form ~YYiðx; yÞ ¼ ~jjiðxÞ#~cciðyÞ;
where ~jjiAH ½0; l1	ð Þ and ~cciAH ½0; l2	ð Þ; and ~jjiðxÞf g or f~cciðyÞg are taken as the initial functions, then
for an arbitrary number of MVI steps the following inequality is satisfied:

oðp;NÞ
11

� �2
p oðs;NÞ

11

� �2
; ðC:3Þ

where oðs;NÞ
11 is the fundamental frequency, obtained using the MB method during a projection on the

basis system f~YYiðx; yÞg
N
i¼1

Proof. According to Eq. (C.2) it is sufficient to prove Eq. (C.3) for p ¼ 1: Let us take

~uuð1;NÞ
11 ðx; yÞ ¼

XN

i¼1

~jjiðxÞ#~uu2i1ðyÞ:

Then, in order to define oð1;NÞ
11 and ~uu2i1ðyÞ the following equations hold:XN

i¼1

Z l1

0

Z½h	~jjiðxÞ#~uu2i1ðyÞ  ~jjjðxÞ dx

�
� oð1;NÞ

11

� �2Z l1

0

M½h	~jjiðxÞ#~uu2i1ðyÞ  ~jjjðxÞ dx

�
¼ 0;

ðj ¼ 1; 2; :::;NÞ:
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From the above we get

oð1;NÞ
11

� �2
p
Z l1

0

Z l2

0

Z½h	
XN

i¼1

ci~jjiðxÞ#~cciðyÞ
XN

j¼1

cj~jjjðxÞ#~ccjðyÞ dx dy;

for the arbitrary series cif gN
i¼1 whose combination

PN
i¼1 ci~jjiðxÞ#~cciðyÞ satisfies Eq. (C.1). Let

ci ¼ csi be the coefficients defined by the MB method. Then we get

oð1;NÞ
11

� �2
p oðs;NÞ

11

� �2
;

and the inequality (C.3) is proved. &

Corollary C.1. If MB convergence is proved for problem (13), then for arbitrary p values MVI
method also converges with N-N:

Proof. Linking inequalities (C.3) and (C.2) we get

oT
11

� �2p oðp;NÞ
11

� �2
p oðs;NÞ

11

� �2
8p ¼ 1; 2; :::: ðC:4Þ

If the convergence of the MB method is proved, then oðs;NÞ
11 -oT

11 for N-N and,
independently of the iteration number, one obtains

oðp;NÞ
11 -

N-N

oT
11: &

Appendix D

In order to apply FEM, we divide the [0, 1] interval intoN finite elements (see Fig. 1). On each element
(‘e’ denotes the element number) the functions wi, ji, ci and Fi (i ¼ 1; 2) are presented in the forms

we
i ðxiÞ ¼

X3
k¼1

we
ikx

e
kðxiÞ; ; ðD:1Þ

je
i ðxiÞ ¼

X3
k¼1

je
ikx

e
kðxiÞ; ðD:2Þ

ce
i ðxiÞ ¼

X3
k¼1

ce
ikx

e
kðxiÞ; ðD:3Þ

Fe
i ðxiÞ ¼

X3
k¼1

Fe
ikx

e
kðxiÞ; ðD:4Þ

where xi ¼ x for i ¼ 1 and xi ¼ y for i ¼ 2:
Above xe

kðxiÞ denote modes defined by the following relations:

xe
1ðxiÞ ¼ 1�

2xi

De

� �
1�

xi

De

� �
;

xe
2ðxiÞ ¼

4xi

De

1�
xi

De

� �
; xe

3ðxiÞ ¼ �
xi

De

1�
2xi

De

� �
;

where De is the interval length with e, the element number.
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The first function corresponds to the interval beginning, the second one to the middle of the
interval, whereas the third one corresponds to the interval end.
In expressions (D.1)–(D.4) by we

ik; j
e
ik; c

e
ik; Fe

ik the functions wi, ji, ci and Fi being sought are
denoted in k node on the eth interval. Substituting Eqs. (D.1)–(D.4) into Eqs. (41)–(48) and
making a projection on xe

mðxiÞ; the following algebraic equations system with regard to we
ik; j

e
ik;

ce
ik; Fe

ik for the finite element e are defined:

2
3
%l2we

1k

Z
De

Aðh;w2;w2; 1; 1Þx
e
kx

e0

m dy þ 2
3
%l1we

1k

Z
De

Aðh;w2;w2; 0; 0Þx
e
k;yx

e0

m;y dy

þ 2
3
%l1je

1k

Z
De

Aðh;j2;w2; 0; 0Þx
e
kx

e0

m;y dy þ 2
3
%l2c

e
1k

Z
De

Aðh;c2;w2; 0; 1Þx
e
kx

e0

m dy

� Fe
1k

Z
De

Aðky;F2;w2; 0; 0Þx
e
k;yyx

e0

m dy � Fe
1k

Z
De

Aðkx;F2;w2; 2; 0Þx
e
kx

e0

m dy

� o2we
1k

Z
De

Aðh;w2;w2; 0; 0Þx
e
kx

e0

m dy ¼ 0; ðD:5Þ

2
3
%l1we

1k

Z
De

Aðh;w2;j2; 0; 0Þx
e
k;yx

e0

m dy þ 1
12

A1212je
1k

Z
De

Aðh3;j2;j2; 1; 1Þx
e
kx

e0

m dy

þ 2
3
%l1je

1k

Z
De

Aðh;j2;j2; 0; 0Þx
e
kx

e0

m dy

þ 1
12l

�2A1111je
1k

Z
De

Aðh3;j2;j2; 0; 0Þx
e
k;yx

e0

m;y dy

þ 1
12

A1122c
e
1k

Z
De

Aðh3;c2;j2; 1; 0Þx
e
kx

e0

m dy

þ 1
12

A1212c
e
1k

Z
De

Aðh3;c2;j2; 0; 1Þx
e
k;yx

e0

m dy

� 1
12
l�21 o2je

1k

Z
De

Aðh3;j2;j2; 0; 0Þx
e
kx

e0

m dy ¼ 0; ðD:6Þ

2
3
%l2we

1k

Z
De

Aðh;w2;c2; 1; 0Þx
e
kx

e0

m dy þ 1
12A1122j

e
1k

Z
De

Aðh3;j2;c2; 0; 1Þx
e
k;yx

e0

m dy

þ 1
12

A1212je
1k

Z
De

Aðh3;j2;c2; 1; 0Þx
e
kx

e0

m;y dy

þ 1
12
l2A2222c

e
1k

Z
De

Aðh3;c2;c2; 1; 1Þx
e
kx

e0

m dy

þ 2
3
%l2c

e
1k

Z
De

Aðh;c2;c2; 0; 0Þx
e
kx

e0

m dy

þ 1
12

A1212c
e
1k

Z
De

Aðh3;c2;c2; 0; 0Þx
e
k;yx

e0

m;y dy

� 1
12
l�22 o2ce

1k

Z
De

Aðh3;c2;c2; 0; 0Þx
e
kx

e0

m dy ¼ 0; ðD:7Þ
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we
1k

Z
De

Aðkx;w2;F2; 0; 2Þx
e
kx

e0

m dy þ we
1k

Z
De

Aðky;w2;F2; 0; 0Þx
e
kx

e0

m;yy dy

þ l�4a1111Fe
1k

Z
De

Aðh�1;F2;F2; 0; 0Þx
e
k;yyx

e0

m;yy dy

þ a1122F
e
1k

Z
De

Aðh�1;F2;F2; 2; 0Þx
e
kx

e0

m;yy dy

þ a1122F
e
1k

Z
De

Aðh�1;F2;F2; 0; 2Þx
e
k;yyx

e0

m dy

þ l4a2222Fe
1k

Z
De

Aðh�1;F2;F2; 2; 2Þx
e
kx

e0

m dy

� a1212F
e
1k

Z
De

Aðh�1;F2;F2; 1; 1Þx
e
k;yx

e0

m;y dy ¼ 0; ðD:8Þ

2
3
%l1we

2k

Z
De

Aðh;w1;w1; 1; 1Þx
e
kx

e0

m dx þ 2
3
%l2we

2k

Z
De

Aðh;w1;w1; 0; 0Þx
e
k;xx

e0

m;x dx

þ 2
3
%l1je

2k

Z
De

Aðh;j1;w1; 0; 1Þx
e
kx

e0

m dx þ 2
3
%l2c

e
2k

Z
De

Aðh;c1;w1; 0; 0Þx
e
kx

e0

m;x dx

� Fe
2k

Z
De

Aðkx;F1;w1; 0; 0Þx
e
k;xxx

e0

m dx � Fe
2k

Z
De

Aðky;F1;w1; 2; 0Þx
e
kx

e0

m dx

� o2we
2k

Z
De

Aðh;w1;w1; 0; 0Þx
e
kx

e0

m dx ¼ 0; ðD:9Þ

2
3
%l1we

2k

Z
De

Aðh;w1;j1; 1; 0Þx
e
kx

e0

m dx þ 1
12l

�2A1111je
2k

Z
De

Aðh3;j1;j1; 1; 1Þx
e
kx

e0

m dx

þ 1
12

A1212je
2k

Z
De

Aðh3;j1;j1; 0; 0Þx
e
k;xx

e0

m;x dx þ 2
3
%l1je

2k

Z
De

Aðh;j1;j1; 0; 0Þx
e
kx

e0

m dx

þ 1
12

A1212c
e
2k

Z
De

Aðh3;c1;j1; 1; 0Þx
e
kx

e0

m;x dx

þ 1
12

A1122c
e
2k

Z
De

Aðh3;c1;j1; 0; 1Þx
e
k;xx

e0

m dx

� 1
12
l�21 o2je

2k

Z
De

Aðh3;j1;j1; 0; 0Þx
e
kx

e0

m dx ¼ 0; ðD:10Þ

2
3
%l2we

2k

Z
De

Aðh;w1;c1; 0; 0Þx
e
k;xx

e0

m dx þ 1
12

A1122je
2k

Z
De

Aðh3;j1;c1; 1; 0Þx
e
kx

e0

m;x dx

þ 1
12

A1212je
2k

Z
De

Aðh3;j1;c1; 0; 1Þx
e
k;xx

e0

m dx

þ 1
12
l2A2222c

e
2k

Z
De

Aðh3;c1;c1; 0; 0Þx
e
k;xx

e0

m dx
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þ 1
12

A1212c
e
2k

Z
De

Aðh3;c1;c1; 1; 1Þx
e
kx

e0

m dx þ 2
3
%l2c

e
2k

Z
De

Aðh;c1;c1; 0; 0Þx
e
kx

e0

m dx

� 1
12
l�22 o2ce

2k

Z
De

Aðh3;c1;c1; 0; 0Þx
e
kx

e0

m dx ¼ 0; ðD:11Þ

we
2k

Z
De

Aðkx;w1;F1; 0; 0Þx
e
kx

e0

m;xx dx þ we
2k

Z
De

Aðky;w1;F1; 0; 2Þx
e
kx

e0

m dx

þ l�4a1111Fe
2k

Z
De

Aðh�1;F1;F1; 2; 2Þx
e
kx

e0

m dx þ a1122F
e
2k

Z
De

Aðh�1;F1;F1; 0; 2Þx
e
k;xxx

e0

m dx

þ a1122F
e
2k

Z
De

Aðh�1;F1;F1; 0; 0Þx
e
k;xxx

e0

m;xx dx

� a1212F
e
2k

Z
De

Aðh�1;F1;F1; 1; 1Þx
e
k;xx

e0

m;x dx

þ l4a2222Fe
2k

Z
De

Aðh�1;F1;F1; 0; 0Þx
e
k;xxx

e0

m;xx dx ¼ 0: ðD:12Þ

During considerations of Eqs. (D.5)–(D.12) a summation with repeated symbols has been used.
In addition, the k;m ¼ 1; 2; 3y; e ¼ e1; e2;y; eN ; are the numbers of those finite elements, which
touch the m node of the e finite element. Let us introduce a vector of the unknown local variables
on the e finite element

~uue
i ¼ we

i1;w
e
i2;w

e
i3;j

e
i1;j

e
i2;j

e
i3;c

e
i1;c

e
i2;c

e
i3;F

e
i1;F

e
i2;F

e
i3

 �
:

Then, Eqs. (D.5)–(D.12) can be presented in the form

Ce
i ~uu

e
i � o2De

i~uu
e
i ¼ 0 ði ¼ 1; 2Þ: ðD:13Þ

For i ¼ 1 Eq. (D.13) ‘models’ Eqs. (D.5)–(D.8), whereas for i ¼ 2 it models Eqs. (D.9)–(D.12).
The matrices Ce

i and De
i may be presented as the blocks

Ce
i ¼

Cwwe
i Cwje

i Cwce
i CwFe

i

Cjwe
i Cjje

i Cjce
i 0

Ccwe
i Ccje

i Ccce
i 0

CFwe
i 0 0 CFFe

i

0
BBB@

1
CCCA; ðD:14Þ

De
i ¼

Dwwe
i 0 0 0

0 Djje
i 0 0

0 0 Dcce
i 0

0 0 0 DFFe
i

0
BBB@

1
CCCA: ðD:15Þ
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The sub-matrices of Ce
i and De

i are defined below ðj ¼ 1 if i ¼ 2; and j ¼ 2 if i ¼ 1Þ:

Cwwe
ikm ¼ww1i

Z
De

A h;wj;wj; 1; 1
� �

xe
k;xj

xe0

m dxj þ ww2i

Z
De

A h;wj;wj; 0; 0
� �

xe
kx

e0

m;xj
dxj;

Cwje
ikm ¼wj1i

Z
De

Aðh;jj;wj; 0; 0Þx
e
kx

e0

m;xj
dxj þ wj2i

Z
De

Aðh;jj;wj; 0; 1Þx
e
kx

e0

m dxj;

Cwce
ikm ¼wc1i

Z
De

Aðh;cj;wj; 0; 1Þx
e
kx

e0

m dxj þ wc2i
Z
De

Aðh;cj;wj; 0; 0Þx
e
kx

e0

m;xj
dxj;

CwFe
ikm ¼

Z
De

A ki;Fj;wj; 2; 0
� �

xe
kx

e0

m dxj þ
Z
De

A kj;Fj;wj; 0; 0
� �

xe
k;xj

xe0

m dxj;

Cjwe
ikm ¼jw1i

Z
De

Aðh;wj;jj; 0; 0Þx
e
k;xj

xe0

m dxj

þ jw2i

Z
De

Aðh;wj;jj; 1; 0Þx
e
kx

e0

m dxj;

Cjje
ikm ¼jj1i

Z
De

Aðh;jj;jj; 0; 0Þx
e
kx

e0

m dxj

þ jj2i
Z
De

Aðh3;jj;jj; 1; 1Þx
e
kx

e0

m dxj

þ jj3i
Z
De

Aðh3;jj;jj; 0; 0Þx
e
k;xj

xe0

m;xj
dxj;

Cjce
ikm ¼jc1i

Z
De

Aðh3;cj;jj; 1; 0Þx
e
kx

e0

m;xj
dxj

þ jc2i
Z
De

Aðh3;cj;jj; 0; 1Þx
e
k;xj

xe0

m dxj; ðD:16Þ

Ccwe
ikm ¼cw1i

Z
De

A h;wj;wj; 1; 0
� �

xe
kx

e0

m dxj þ cw2i

Z
De

A h;wj;wj; 0; 0
� �

xe
k;xj

xe0

m dxj;

Ccje
ikm ¼cj1i

Z
De

Aðh3;jj;cj; 0; 1Þx
e
k;xj

xe0

m dxj þ cj2i
Z
De

Aðh3;jj;cj; 1; 0Þx
e
kx

e0

m;xj
dxj;

Ccce
ikm ¼cc1i

Z
De

Aðh;cj;cj; 0; 0Þx
e
kx

e0

m dxj

þ cc2i
Z
De

Aðh3;cj;cj; 1; 1Þx
e
kx

e0

m dxj þ cc3i
Z
De

Aðh3;cj;cj; 0; 0Þx
e
k;xj

xe0

m;xj
dxj;

CFwe
ikm ¼

Z
De

A ki;wj;Fj; 0; 2
� �

xe
kx

e0

m dxj þ
Z
De

A kj;wj;Fj; 0; 0
� �

xe
kx

e0

m;xjxj
dxj;

CFFe
ikm ¼FF1i

Z
De

A h�1;Fj;Fj; 2; 2
� �

xe
kx

e0

m dxj

þ FF2i

Z
De

A h�1;Fj;Fj; 0; 2
� �

xe
k;xjxj

xe0

m dxj þ FF3i

Z
De

A h�1;Fj;Fj; 2; 0
� �

xe
kx

e0

m;xjxj
dxj

þ FF4i

Z
De

A h�1;Fj;Fj; 1; 1
� �

xe
k;xj

xe0

m;xj
dxj þ FF5i

Z
De

A h�1;Fj;Fj; 0; 0
� �

xe
k;xjxj

xe0

m;xjxj
dxj;
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Dwwe
ikm ¼

Z
De

A h;wj;wj; 0; 0
� �

xe
kx

e0

m dxj;

Djje
ikm ¼

1

12
l�21

Z
De

Aðh3;jj;jj; 0; 0Þx
e
kx

e0

m dxj;

Dcce
ikm ¼

1

12
l�22

Z
De

Aðh3;cj;cj; 0; 0Þx
e
kx

e0

m dxj:

The coefficients used (ww1i, ww2i and others) are defined by

ww1i ¼
2

3

%l2; i ¼ 1;
%l1; i ¼ 2;

(
ww2i ¼

2

3

%l1; i ¼ 1;
%l2; i ¼ 2;

(

jw1i ¼wj1i; jw2i ¼ wj2i;

wj1i ¼
2

3

%l1; i ¼ 1;

0; i ¼ 2;

(
wj2i ¼

2

3

0; i ¼ 1;
%l2; i ¼ 2;

(

jj1i ¼
2

3

%l1; i ¼ 1;
%l2; i ¼ 2;

(
jj2i ¼

1

12

A1212; i ¼ 1;

l�2A1111; i ¼ 2;

(

jj3i ¼
1

12

l�2A1111; i ¼ 1;

A1212; i ¼ 2;

(
jc1i ¼

1

12

A1122; i ¼ 1;

A1212; i ¼ 2;

(

jc2i ¼
1

12

A1212; i ¼ 1;

A1122; i ¼ 2;

(
cw1i ¼

2

3

%l2; i ¼ 1;

0; i ¼ 2;

(

cw2i ¼
2

3

0; i ¼ 1;
%l2; i ¼ 2;

(
cj1i ¼

1

12

A1122; i ¼ 1;

A1212; i ¼ 2;

(

cj2i ¼
1

12

A1212; i ¼ 1;

A1122; i ¼ 2;

(
cc1i ¼

2

3

%l2; i ¼ 1;
%l1; i ¼ 2;

(

cc2i ¼
1

12

A1212; i ¼ 1;

l2A2222; i ¼ 2;

(
cc3i ¼

1

12

l2A2222; i ¼ 1;

A1212; i ¼ 2;

(

FF1i ¼
l4a2222; i ¼ 1;

l�4a1111; i ¼ 2;

(
FF2i ¼

a1122; i ¼ 1;

a1122; i ¼ 2;

(

FF3i ¼
a1122; i ¼ 1;

a1122; i ¼ 2;

(
FF4i ¼

�a1212; i ¼ 1;

�a1212; i ¼ 2;

(

FF5i ¼
l�4a1111; i ¼ 1;

l4a2222; i ¼ 2:

(
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Thus, in order to get Ce
i and De

i matrices for different i ¼ 1; 2 it is sufficient to change the
coefficients according to blocks (D.16).

Appendix E. Nomenclature

x, y, z Descartes co-ordinates
a; b; g curvilinear orthogonal co-ordinates
t time
O set of points in R2 (of shallow shell)
@O boundary of O
AH, AB, aH, aB, hH, hB below (H) and upper (B) bounds
C0, C1 constants
G(  ), G�1(  ) differential and integral operators, respectively
A a; bð Þ; B a;bð Þ coefficient of first square forms related to a surface
K1 a;bð Þ; K2 a; bð Þ main curvatures of a surface

V ¼ VAL2 Oð Þ Vj AP
 �

set of functions from the space L2 Oð Þ; possessing P property

A belonging
- tends to
3 equivalently
L[h], M[h], A[h], B[h] differential operators depending on h
*V quantity conjugate to V

8VAA for any V belonging to A
UV vector with components (U, V1, U2, V2, y,UnVn) in RN

Vif gN
i¼1

set of functions for i=1, 2,y,N

det matrix determinant
V js function value on a boundary
[  ], x or (  ), x derivative with respect to x

0 hað Þ rest of order ha

V 0 ¼
dV

dt
F stress function
W normal displacement of the middle of the surface in Z direction
gx; gy angles of rotation of a normal to the middle of the surface in the planes

xz and yz, respectively
h(x,y) or 2 h(x,y) shell thickness in the point (x,y)
a, b or 2a, 2b shell (plate) dimensions
K=1/Rx, K=1/Ry curvatures
r shell material weight density
E1, E2 Young’s modulus in directions x and y (E1=E2=E for an isotropic material)
m ¼ rh mass of a unit surface
g acceleration due to gravity
n12; n21 The Poisson coefficients of an orthotropic material (for isotropic

material n12 ¼ n21 ¼ n)
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G12, G13, G23 shear moduli in planes xy, xz, yz

A1111 ¼
E1

1� n12n21
; a1111 ¼

1

E1
ð1; 2Þ

#
; A1122 ¼

E1n21
1� n12n21

;

a1122 ¼ �
n21
E2

; A1212 ¼ G12; a1212 ¼ G�1
12 ð1; 2

#

; 3Þ;

eij tensor deformation components for a middle of the shell surface

T11, T12, T22 stresses in the middle of the surface
Q1, Q2 lateral forces
M11, M12, M22 moments
q lateral loads
on n ¼ 1; 2yð Þ frequencies of vibrations measured in Hz

D ¼
Eh3

12 1� n2ð Þ

bending stiffness of isotropic plate

Rn Euclidean space of n dimension
Cm Oð Þ space of functions m times continuously differentiable into subset O in

Rn

Lp Oð Þ space of functions integrable with power p

U ;Vð Þ ¼
R
O UV dO scalar product in L2O

ah(  ,  ), bh(  ,  ) bilinear forms depending on h

ð~UU ; ~VV Þ ¼
R
~UU ~VV dO scalar product in L2 Oð Þ

� �n

Hm
0 Oð Þ closure CN Oð Þ with a compact carrier in Hm Oð Þ

Vj jj jv0 norm in space V0

Vj jj jm;O¼
P

aj jrm

R
O

@aV

@xa1@ya2

����
����
2

dO

 !1=2
; a ¼ a1 þ a2

jj~VV jjm;O ¼
P

i¼1 Vij jj j2m;O

� �1=2
for ~VV ¼ ðV1; V2;yVnÞA Hm Oð Þð Þn

aj j modulus of number a

L2 O;T ;Hm Oð Þð Þ space of functions V such that
R T

O
Vj jj j2m;O dt is bounded

r2
kV ¼ Ky

@2V

@x2
þ Kx

@2V

@y2

U@i set of admissible control.
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